Integral von $$$\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}\, dx$$$.
Lösung
Multiplizieren Sie Zähler und Nenner mit $$$\cos^{4}{\left(x \right)}$$$ und wandeln Sie $$$\frac{\sin^{4}{\left(x \right)}}{\cos^{4}{\left(x \right)}}$$$ in $$$\tan^{4}{\left(x \right)}$$$ um:
$${\color{red}{\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\tan^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}}$$
Wandle $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ in $$$\sec^{2}{\left(x \right)}$$$ um:
$${\color{red}{\int{\frac{\tan^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}}$$
Sei $$$u=\tan{\left(x \right)}$$$.
Dann $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\sec^{2}{\left(x \right)} dx = du$$$.
Also,
$${\color{red}{\int{\tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{u^{4} d u}}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=4$$$ an:
$${\color{red}{\int{u^{4} d u}}}={\color{red}{\frac{u^{1 + 4}}{1 + 4}}}={\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
Zur Erinnerung: $$$u=\tan{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{5}}{5} = \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$
Daher,
$$\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5}+C$$
Antwort
$$$\int \frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}\, dx = \frac{\tan^{5}{\left(x \right)}}{5} + C$$$A