Integralen av $$$\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}\, dx$$$.
Lösning
Multiplicera täljaren och nämnaren med $$$\cos^{4}{\left(x \right)}$$$ och omvandla $$$\frac{\sin^{4}{\left(x \right)}}{\cos^{4}{\left(x \right)}}$$$ till $$$\tan^{4}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\tan^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}}$$
Omvandla $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ till $$$\sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\tan^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}}$$
Låt $$$u=\tan{\left(x \right)}$$$ vara.
Då $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\sec^{2}{\left(x \right)} dx = du$$$.
Integralen blir
$${\color{red}{\int{\tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{u^{4} d u}}}$$
Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=4$$$:
$${\color{red}{\int{u^{4} d u}}}={\color{red}{\frac{u^{1 + 4}}{1 + 4}}}={\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
Kom ihåg att $$$u=\tan{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{5}}{5} = \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$
Alltså,
$$\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5}$$
Lägg till integrationskonstanten:
$$\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5}+C$$
Svar
$$$\int \frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}\, dx = \frac{\tan^{5}{\left(x \right)}}{5} + C$$$A