$$$\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}\, dx$$$

解答

將分子與分母同時乘以 $$$\cos^{4}{\left(x \right)}$$$,並將 $$$\frac{\sin^{4}{\left(x \right)}}{\cos^{4}{\left(x \right)}}$$$ 轉換為 $$$\tan^{4}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\tan^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}}$$

$$$\frac{1}{\cos^{2}{\left(x \right)}}$$$轉換為$$$\sec^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\tan^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}}$$

$$$u=\tan{\left(x \right)}$$$

$$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(x \right)} dx = du$$$

所以,

$${\color{red}{\int{\tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{u^{4} d u}}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=4$$$

$${\color{red}{\int{u^{4} d u}}}={\color{red}{\frac{u^{1 + 4}}{1 + 4}}}={\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

回顧一下 $$$u=\tan{\left(x \right)}$$$

$$\frac{{\color{red}{u}}^{5}}{5} = \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$

因此,

$$\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5}$$

加上積分常數:

$$\int{\frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5}+C$$

答案

$$$\int \frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}\, dx = \frac{\tan^{5}{\left(x \right)}}{5} + C$$$A


Please try a new game Rotatly