Integral von $$$x \left(x^{2} - 1\right)$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int x \left(x^{2} - 1\right)\, dx$$$.
Lösung
Sei $$$u=x^{2} - 1$$$.
Dann $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (die Schritte sind » zu sehen), und es gilt $$$x dx = \frac{du}{2}$$$.
Somit,
$${\color{red}{\int{x \left(x^{2} - 1\right) d x}}} = {\color{red}{\int{\frac{u}{2} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = u$$$ an:
$${\color{red}{\int{\frac{u}{2} d u}}} = {\color{red}{\left(\frac{\int{u d u}}{2}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:
$$\frac{{\color{red}{\int{u d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$
Zur Erinnerung: $$$u=x^{2} - 1$$$:
$$\frac{{\color{red}{u}}^{2}}{4} = \frac{{\color{red}{\left(x^{2} - 1\right)}}^{2}}{4}$$
Daher,
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}+C$$
Antwort
$$$\int x \left(x^{2} - 1\right)\, dx = \frac{\left(x^{2} - 1\right)^{2}}{4} + C$$$A