$$$x \left(x^{2} - 1\right)$$$의 적분
사용자 입력
$$$\int x \left(x^{2} - 1\right)\, dx$$$을(를) 구하시오.
풀이
$$$u=x^{2} - 1$$$라 하자.
그러면 $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$x dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{x \left(x^{2} - 1\right) d x}}} = {\color{red}{\int{\frac{u}{2} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = u$$$에 적용하세요:
$${\color{red}{\int{\frac{u}{2} d u}}} = {\color{red}{\left(\frac{\int{u d u}}{2}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\frac{{\color{red}{\int{u d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$
다음 $$$u=x^{2} - 1$$$을 기억하라:
$$\frac{{\color{red}{u}}^{2}}{4} = \frac{{\color{red}{\left(x^{2} - 1\right)}}^{2}}{4}$$
따라서,
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}$$
적분 상수를 추가하세요:
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}+C$$
정답
$$$\int x \left(x^{2} - 1\right)\, dx = \frac{\left(x^{2} - 1\right)^{2}}{4} + C$$$A