Integrale di $$$x \left(x^{2} - 1\right)$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int x \left(x^{2} - 1\right)\, dx$$$.
Soluzione
Sia $$$u=x^{2} - 1$$$.
Quindi $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (i passaggi si possono vedere »), e si ha che $$$x dx = \frac{du}{2}$$$.
Pertanto,
$${\color{red}{\int{x \left(x^{2} - 1\right) d x}}} = {\color{red}{\int{\frac{u}{2} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = u$$$:
$${\color{red}{\int{\frac{u}{2} d u}}} = {\color{red}{\left(\frac{\int{u d u}}{2}\right)}}$$
Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\frac{{\color{red}{\int{u d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$
Ricordiamo che $$$u=x^{2} - 1$$$:
$$\frac{{\color{red}{u}}^{2}}{4} = \frac{{\color{red}{\left(x^{2} - 1\right)}}^{2}}{4}$$
Pertanto,
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}$$
Aggiungi la costante di integrazione:
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}+C$$
Risposta
$$$\int x \left(x^{2} - 1\right)\, dx = \frac{\left(x^{2} - 1\right)^{2}}{4} + C$$$A