$$$x \left(x^{2} - 1\right)$$$ 的积分
您的输入
求$$$\int x \left(x^{2} - 1\right)\, dx$$$。
解答
设$$$u=x^{2} - 1$$$。
则$$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{2}$$$。
积分变为
$${\color{red}{\int{x \left(x^{2} - 1\right) d x}}} = {\color{red}{\int{\frac{u}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = u$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{u}{2} d u}}} = {\color{red}{\left(\frac{\int{u d u}}{2}\right)}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$\frac{{\color{red}{\int{u d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$
回忆一下 $$$u=x^{2} - 1$$$:
$$\frac{{\color{red}{u}}^{2}}{4} = \frac{{\color{red}{\left(x^{2} - 1\right)}}^{2}}{4}$$
因此,
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}$$
加上积分常数:
$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}+C$$
答案
$$$\int x \left(x^{2} - 1\right)\, dx = \frac{\left(x^{2} - 1\right)^{2}}{4} + C$$$A