Integral dari $$$x \left(x^{2} - 1\right)$$$

Kalkulator akan menemukan integral/antiturunan dari $$$x \left(x^{2} - 1\right)$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int x \left(x^{2} - 1\right)\, dx$$$.

Solusi

Misalkan $$$u=x^{2} - 1$$$.

Kemudian $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$x dx = \frac{du}{2}$$$.

Oleh karena itu,

$${\color{red}{\int{x \left(x^{2} - 1\right) d x}}} = {\color{red}{\int{\frac{u}{2} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = u$$$:

$${\color{red}{\int{\frac{u}{2} d u}}} = {\color{red}{\left(\frac{\int{u d u}}{2}\right)}}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$\frac{{\color{red}{\int{u d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$

Ingat bahwa $$$u=x^{2} - 1$$$:

$$\frac{{\color{red}{u}}^{2}}{4} = \frac{{\color{red}{\left(x^{2} - 1\right)}}^{2}}{4}$$

Oleh karena itu,

$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}$$

Tambahkan konstanta integrasi:

$$\int{x \left(x^{2} - 1\right) d x} = \frac{\left(x^{2} - 1\right)^{2}}{4}+C$$

Jawaban

$$$\int x \left(x^{2} - 1\right)\, dx = \frac{\left(x^{2} - 1\right)^{2}}{4} + C$$$A


Please try a new game Rotatly