Integral von $$$t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt$$$.
Lösung
Sei $$$u=t^{2}$$$.
Dann $$$du=\left(t^{2}\right)^{\prime }dt = 2 t dt$$$ (die Schritte sind » zu sehen), und es gilt $$$t dt = \frac{du}{2}$$$.
Das Integral wird zu
$${\color{red}{\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{4}$$$ und $$$f{\left(u \right)} = \sin{\left(2 u \right)}$$$ an:
$${\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(2 u \right)} d u}}{4}\right)}}$$
Sei $$$v=2 u$$$.
Dann $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = \frac{dv}{2}$$$.
Das Integral wird zu
$$\frac{{\color{red}{\int{\sin{\left(2 u \right)} d u}}}}{4} = \frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(v \right)} = \sin{\left(v \right)}$$$ an:
$$\frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(v \right)} d v}}{2}\right)}}}{4}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{8} = \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{8}$$
Zur Erinnerung: $$$v=2 u$$$:
$$- \frac{\cos{\left({\color{red}{v}} \right)}}{8} = - \frac{\cos{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$
Zur Erinnerung: $$$u=t^{2}$$$:
$$- \frac{\cos{\left(2 {\color{red}{u}} \right)}}{8} = - \frac{\cos{\left(2 {\color{red}{t^{2}}} \right)}}{8}$$
Daher,
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}+C$$
Antwort
$$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt = - \frac{\cos{\left(2 t^{2} \right)}}{8} + C$$$A