$$$t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt$$$을(를) 구하시오.
풀이
$$$u=t^{2}$$$라 하자.
그러면 $$$du=\left(t^{2}\right)^{\prime }dt = 2 t dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$t dt = \frac{du}{2}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(u \right)} = \sin{\left(2 u \right)}$$$에 적용하세요:
$${\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(2 u \right)} d u}}{4}\right)}}$$
$$$v=2 u$$$라 하자.
그러면 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{2}$$$임을 얻습니다.
따라서,
$$\frac{{\color{red}{\int{\sin{\left(2 u \right)} d u}}}}{4} = \frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(v \right)} = \sin{\left(v \right)}$$$에 적용하세요:
$$\frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(v \right)} d v}}{2}\right)}}}{4}$$
사인 함수의 적분은 $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{8} = \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{8}$$
다음 $$$v=2 u$$$을 기억하라:
$$- \frac{\cos{\left({\color{red}{v}} \right)}}{8} = - \frac{\cos{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$
다음 $$$u=t^{2}$$$을 기억하라:
$$- \frac{\cos{\left(2 {\color{red}{u}} \right)}}{8} = - \frac{\cos{\left(2 {\color{red}{t^{2}}} \right)}}{8}$$
따라서,
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}$$
적분 상수를 추가하세요:
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}+C$$
정답
$$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt = - \frac{\cos{\left(2 t^{2} \right)}}{8} + C$$$A