Integralen av $$$t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt$$$.

Lösning

Låt $$$u=t^{2}$$$ vara.

$$$du=\left(t^{2}\right)^{\prime }dt = 2 t dt$$$ (stegen kan ses »), och vi har att $$$t dt = \frac{du}{2}$$$.

Alltså,

$${\color{red}{\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{4}$$$ och $$$f{\left(u \right)} = \sin{\left(2 u \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(2 u \right)} d u}}{4}\right)}}$$

Låt $$$v=2 u$$$ vara.

$$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (stegen kan ses »), och vi har att $$$du = \frac{dv}{2}$$$.

Integralen kan omskrivas som

$$\frac{{\color{red}{\int{\sin{\left(2 u \right)} d u}}}}{4} = \frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(v \right)} = \sin{\left(v \right)}$$$:

$$\frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(v \right)} d v}}{2}\right)}}}{4}$$

Integralen av sinus är $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{8} = \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{8}$$

Kom ihåg att $$$v=2 u$$$:

$$- \frac{\cos{\left({\color{red}{v}} \right)}}{8} = - \frac{\cos{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$

Kom ihåg att $$$u=t^{2}$$$:

$$- \frac{\cos{\left(2 {\color{red}{u}} \right)}}{8} = - \frac{\cos{\left(2 {\color{red}{t^{2}}} \right)}}{8}$$

Alltså,

$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}$$

Lägg till integrationskonstanten:

$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}+C$$

Svar

$$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt = - \frac{\cos{\left(2 t^{2} \right)}}{8} + C$$$A


Please try a new game Rotatly