Integral de $$$t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt$$$.
Solução
Seja $$$u=t^{2}$$$.
Então $$$du=\left(t^{2}\right)^{\prime }dt = 2 t dt$$$ (veja os passos »), e obtemos $$$t dt = \frac{du}{2}$$$.
A integral pode ser reescrita como
$${\color{red}{\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \sin{\left(2 u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(2 u \right)} d u}}{4}\right)}}$$
Seja $$$v=2 u$$$.
Então $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (veja os passos »), e obtemos $$$du = \frac{dv}{2}$$$.
A integral pode ser reescrita como
$$\frac{{\color{red}{\int{\sin{\left(2 u \right)} d u}}}}{4} = \frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(v \right)} = \sin{\left(v \right)}$$$:
$$\frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(v \right)} d v}}{2}\right)}}}{4}$$
A integral do seno é $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{8} = \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{8}$$
Recorde que $$$v=2 u$$$:
$$- \frac{\cos{\left({\color{red}{v}} \right)}}{8} = - \frac{\cos{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$
Recorde que $$$u=t^{2}$$$:
$$- \frac{\cos{\left(2 {\color{red}{u}} \right)}}{8} = - \frac{\cos{\left(2 {\color{red}{t^{2}}} \right)}}{8}$$
Portanto,
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}$$
Adicione a constante de integração:
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}+C$$
Resposta
$$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt = - \frac{\cos{\left(2 t^{2} \right)}}{8} + C$$$A