$$$t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}$$$ 的积分
您的输入
求$$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt$$$。
解答
设$$$u=t^{2}$$$。
则$$$du=\left(t^{2}\right)^{\prime }dt = 2 t dt$$$ (步骤见»),并有$$$t dt = \frac{du}{2}$$$。
积分变为
$${\color{red}{\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}}$$
对 $$$c=\frac{1}{4}$$$ 和 $$$f{\left(u \right)} = \sin{\left(2 u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sin{\left(2 u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(2 u \right)} d u}}{4}\right)}}$$
设$$$v=2 u$$$。
则$$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步骤见»),并有$$$du = \frac{dv}{2}$$$。
该积分可以改写为
$$\frac{{\color{red}{\int{\sin{\left(2 u \right)} d u}}}}{4} = \frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(v \right)} = \sin{\left(v \right)}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$:
$$\frac{{\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(v \right)} d v}}{2}\right)}}}{4}$$
正弦函数的积分为 $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{8} = \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{8}$$
回忆一下 $$$v=2 u$$$:
$$- \frac{\cos{\left({\color{red}{v}} \right)}}{8} = - \frac{\cos{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$
回忆一下 $$$u=t^{2}$$$:
$$- \frac{\cos{\left(2 {\color{red}{u}} \right)}}{8} = - \frac{\cos{\left(2 {\color{red}{t^{2}}} \right)}}{8}$$
因此,
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}$$
加上积分常数:
$$\int{t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)} d t} = - \frac{\cos{\left(2 t^{2} \right)}}{8}+C$$
答案
$$$\int t \sin{\left(t^{2} \right)} \cos{\left(t^{2} \right)}\, dt = - \frac{\cos{\left(2 t^{2} \right)}}{8} + C$$$A