Integral von $$$\ln\left(x^{2} + 1\right)$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \ln\left(x^{2} + 1\right)\, dx$$$.
Lösung
Für das Integral $$$\int{\ln{\left(x^{2} + 1 \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\ln{\left(x^{2} + 1 \right)}$$$ und $$$\operatorname{dv}=dx$$$.
Dann gilt $$$\operatorname{du}=\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }dx=\frac{2 x}{x^{2} + 1} dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{1 d x}=x$$$ (Rechenschritte siehe »).
Das Integral lässt sich umschreiben als
$${\color{red}{\int{\ln{\left(x^{2} + 1 \right)} d x}}}={\color{red}{\left(\ln{\left(x^{2} + 1 \right)} \cdot x-\int{x \cdot \frac{2 x}{x^{2} + 1} d x}\right)}}={\color{red}{\left(x \ln{\left(x^{2} + 1 \right)} - \int{\frac{2 x^{2}}{x^{2} + 1} d x}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=2$$$ und $$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$ an:
$$x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\int{\frac{2 x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\left(2 \int{\frac{x^{2}}{x^{2} + 1} d x}\right)}}$$
Forme den Bruch um und zerlege ihn:
$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}$$
Gliedweise integrieren:
$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, dx = c x$$$ mit $$$c=1$$$ an:
$$x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{1 d x}}} = x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{x}}$$
Das Integral von $$$\frac{1}{x^{2} + 1}$$$ ist $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Daher,
$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}+C$$
Antwort
$$$\int \ln\left(x^{2} + 1\right)\, dx = \left(x \ln\left(x^{2} + 1\right) - 2 x + 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A