Integral dari $$$\ln\left(x^{2} + 1\right)$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\ln\left(x^{2} + 1\right)$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \ln\left(x^{2} + 1\right)\, dx$$$.

Solusi

Untuk integral $$$\int{\ln{\left(x^{2} + 1 \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Misalkan $$$\operatorname{u}=\ln{\left(x^{2} + 1 \right)}$$$ dan $$$\operatorname{dv}=dx$$$.

Maka $$$\operatorname{du}=\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }dx=\frac{2 x}{x^{2} + 1} dx$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{1 d x}=x$$$ (langkah-langkah dapat dilihat di »).

Dengan demikian,

$${\color{red}{\int{\ln{\left(x^{2} + 1 \right)} d x}}}={\color{red}{\left(\ln{\left(x^{2} + 1 \right)} \cdot x-\int{x \cdot \frac{2 x}{x^{2} + 1} d x}\right)}}={\color{red}{\left(x \ln{\left(x^{2} + 1 \right)} - \int{\frac{2 x^{2}}{x^{2} + 1} d x}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$:

$$x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\int{\frac{2 x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\left(2 \int{\frac{x^{2}}{x^{2} + 1} d x}\right)}}$$

Tulis ulang dan pisahkan pecahannya:

$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}$$

Integralkan suku demi suku:

$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:

$$x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{1 d x}}} = x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{x}}$$

Integral dari $$$\frac{1}{x^{2} + 1}$$$ adalah $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:

$$x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$

Oleh karena itu,

$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}$$

Tambahkan konstanta integrasi:

$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}+C$$

Jawaban

$$$\int \ln\left(x^{2} + 1\right)\, dx = \left(x \ln\left(x^{2} + 1\right) - 2 x + 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly