Integral de $$$\ln\left(x^{2} + 1\right)$$$

A calculadora encontrará a integral/antiderivada de $$$\ln\left(x^{2} + 1\right)$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \ln\left(x^{2} + 1\right)\, dx$$$.

Solução

Para a integral $$$\int{\ln{\left(x^{2} + 1 \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=\ln{\left(x^{2} + 1 \right)}$$$ e $$$\operatorname{dv}=dx$$$.

Então $$$\operatorname{du}=\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }dx=\frac{2 x}{x^{2} + 1} dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d x}=x$$$ (os passos podem ser vistos »).

A integral pode ser reescrita como

$${\color{red}{\int{\ln{\left(x^{2} + 1 \right)} d x}}}={\color{red}{\left(\ln{\left(x^{2} + 1 \right)} \cdot x-\int{x \cdot \frac{2 x}{x^{2} + 1} d x}\right)}}={\color{red}{\left(x \ln{\left(x^{2} + 1 \right)} - \int{\frac{2 x^{2}}{x^{2} + 1} d x}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$:

$$x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\int{\frac{2 x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\left(2 \int{\frac{x^{2}}{x^{2} + 1} d x}\right)}}$$

Reescreva e separe a fração:

$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}$$

Integre termo a termo:

$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}$$

Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:

$$x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{1 d x}}} = x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{x}}$$

A integral de $$$\frac{1}{x^{2} + 1}$$$ é $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:

$$x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$

Portanto,

$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}$$

Adicione a constante de integração:

$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}+C$$

Resposta

$$$\int \ln\left(x^{2} + 1\right)\, dx = \left(x \ln\left(x^{2} + 1\right) - 2 x + 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly