Integraal van $$$\ln\left(x^{2} + 1\right)$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \ln\left(x^{2} + 1\right)\, dx$$$.
Oplossing
Voor de integraal $$$\int{\ln{\left(x^{2} + 1 \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=\ln{\left(x^{2} + 1 \right)}$$$ en $$$\operatorname{dv}=dx$$$.
Dan $$$\operatorname{du}=\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }dx=\frac{2 x}{x^{2} + 1} dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d x}=x$$$ (de stappen zijn te zien »).
De integraal kan worden herschreven als
$${\color{red}{\int{\ln{\left(x^{2} + 1 \right)} d x}}}={\color{red}{\left(\ln{\left(x^{2} + 1 \right)} \cdot x-\int{x \cdot \frac{2 x}{x^{2} + 1} d x}\right)}}={\color{red}{\left(x \ln{\left(x^{2} + 1 \right)} - \int{\frac{2 x^{2}}{x^{2} + 1} d x}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$:
$$x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\int{\frac{2 x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\left(2 \int{\frac{x^{2}}{x^{2} + 1} d x}\right)}}$$
Herschrijf en splits de breuk:
$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}$$
Integreer termgewijs:
$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{1 d x}}} = x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{x}}$$
De integraal van $$$\frac{1}{x^{2} + 1}$$$ is $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Dus,
$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}+C$$
Antwoord
$$$\int \ln\left(x^{2} + 1\right)\, dx = \left(x \ln\left(x^{2} + 1\right) - 2 x + 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A