$$$\ln\left(x^{2} + 1\right)$$$ 的積分

此計算器將求出 $$$\ln\left(x^{2} + 1\right)$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \ln\left(x^{2} + 1\right)\, dx$$$

解答

對於積分 $$$\int{\ln{\left(x^{2} + 1 \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x^{2} + 1 \right)}$$$$$$\operatorname{dv}=dx$$$

$$$\operatorname{du}=\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }dx=\frac{2 x}{x^{2} + 1} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。

該積分可改寫為

$${\color{red}{\int{\ln{\left(x^{2} + 1 \right)} d x}}}={\color{red}{\left(\ln{\left(x^{2} + 1 \right)} \cdot x-\int{x \cdot \frac{2 x}{x^{2} + 1} d x}\right)}}={\color{red}{\left(x \ln{\left(x^{2} + 1 \right)} - \int{\frac{2 x^{2}}{x^{2} + 1} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$$$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$

$$x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\int{\frac{2 x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - {\color{red}{\left(2 \int{\frac{x^{2}}{x^{2} + 1} d x}\right)}}$$

重寫並拆分分式:

$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}$$

逐項積分:

$$x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{1 d x}}} = x \ln{\left(x^{2} + 1 \right)} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{x}}$$

$$$\frac{1}{x^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$

$$x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$

因此,

$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}$$

加上積分常數:

$$\int{\ln{\left(x^{2} + 1 \right)} d x} = x \ln{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}+C$$

答案

$$$\int \ln\left(x^{2} + 1\right)\, dx = \left(x \ln\left(x^{2} + 1\right) - 2 x + 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly