Integral von $$$t e^{2} - 3 e^{t}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(t e^{2} - 3 e^{t}\right)\, dt$$$.
Lösung
Gliedweise integrieren:
$${\color{red}{\int{\left(t e^{2} - 3 e^{t}\right)d t}}} = {\color{red}{\left(\int{t e^{2} d t} - \int{3 e^{t} d t}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=3$$$ und $$$f{\left(t \right)} = e^{t}$$$ an:
$$\int{t e^{2} d t} - {\color{red}{\int{3 e^{t} d t}}} = \int{t e^{2} d t} - {\color{red}{\left(3 \int{e^{t} d t}\right)}}$$
Das Integral der Exponentialfunktion lautet $$$\int{e^{t} d t} = e^{t}$$$:
$$\int{t e^{2} d t} - 3 {\color{red}{\int{e^{t} d t}}} = \int{t e^{2} d t} - 3 {\color{red}{e^{t}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=e^{2}$$$ und $$$f{\left(t \right)} = t$$$ an:
$$- 3 e^{t} + {\color{red}{\int{t e^{2} d t}}} = - 3 e^{t} + {\color{red}{e^{2} \int{t d t}}}$$
Wenden Sie die Potenzregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:
$$- 3 e^{t} + e^{2} {\color{red}{\int{t d t}}}=- 3 e^{t} + e^{2} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=- 3 e^{t} + e^{2} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Daher,
$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}+C$$
Antwort
$$$\int \left(t e^{2} - 3 e^{t}\right)\, dt = \left(\frac{t^{2} e^{2}}{2} - 3 e^{t}\right) + C$$$A