Ολοκλήρωμα του $$$t e^{2} - 3 e^{t}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$t e^{2} - 3 e^{t}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(t e^{2} - 3 e^{t}\right)\, dt$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(t e^{2} - 3 e^{t}\right)d t}}} = {\color{red}{\left(\int{t e^{2} d t} - \int{3 e^{t} d t}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=3$$$ και $$$f{\left(t \right)} = e^{t}$$$:

$$\int{t e^{2} d t} - {\color{red}{\int{3 e^{t} d t}}} = \int{t e^{2} d t} - {\color{red}{\left(3 \int{e^{t} d t}\right)}}$$

Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{t} d t} = e^{t}$$$:

$$\int{t e^{2} d t} - 3 {\color{red}{\int{e^{t} d t}}} = \int{t e^{2} d t} - 3 {\color{red}{e^{t}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=e^{2}$$$ και $$$f{\left(t \right)} = t$$$:

$$- 3 e^{t} + {\color{red}{\int{t e^{2} d t}}} = - 3 e^{t} + {\color{red}{e^{2} \int{t d t}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$- 3 e^{t} + e^{2} {\color{red}{\int{t d t}}}=- 3 e^{t} + e^{2} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=- 3 e^{t} + e^{2} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Επομένως,

$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}+C$$

Απάντηση

$$$\int \left(t e^{2} - 3 e^{t}\right)\, dt = \left(\frac{t^{2} e^{2}}{2} - 3 e^{t}\right) + C$$$A


Please try a new game Rotatly