Integral dari $$$t e^{2} - 3 e^{t}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$t e^{2} - 3 e^{t}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(t e^{2} - 3 e^{t}\right)\, dt$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(t e^{2} - 3 e^{t}\right)d t}}} = {\color{red}{\left(\int{t e^{2} d t} - \int{3 e^{t} d t}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=3$$$ dan $$$f{\left(t \right)} = e^{t}$$$:

$$\int{t e^{2} d t} - {\color{red}{\int{3 e^{t} d t}}} = \int{t e^{2} d t} - {\color{red}{\left(3 \int{e^{t} d t}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{t} d t} = e^{t}$$$:

$$\int{t e^{2} d t} - 3 {\color{red}{\int{e^{t} d t}}} = \int{t e^{2} d t} - 3 {\color{red}{e^{t}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=e^{2}$$$ dan $$$f{\left(t \right)} = t$$$:

$$- 3 e^{t} + {\color{red}{\int{t e^{2} d t}}} = - 3 e^{t} + {\color{red}{e^{2} \int{t d t}}}$$

Terapkan aturan pangkat $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$- 3 e^{t} + e^{2} {\color{red}{\int{t d t}}}=- 3 e^{t} + e^{2} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=- 3 e^{t} + e^{2} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Oleh karena itu,

$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}$$

Tambahkan konstanta integrasi:

$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}+C$$

Jawaban

$$$\int \left(t e^{2} - 3 e^{t}\right)\, dt = \left(\frac{t^{2} e^{2}}{2} - 3 e^{t}\right) + C$$$A


Please try a new game Rotatly