$$$t e^{2} - 3 e^{t}$$$の積分
入力内容
$$$\int \left(t e^{2} - 3 e^{t}\right)\, dt$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(t e^{2} - 3 e^{t}\right)d t}}} = {\color{red}{\left(\int{t e^{2} d t} - \int{3 e^{t} d t}\right)}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=3$$$ と $$$f{\left(t \right)} = e^{t}$$$ に対して適用する:
$$\int{t e^{2} d t} - {\color{red}{\int{3 e^{t} d t}}} = \int{t e^{2} d t} - {\color{red}{\left(3 \int{e^{t} d t}\right)}}$$
指数関数の積分は $$$\int{e^{t} d t} = e^{t}$$$です:
$$\int{t e^{2} d t} - 3 {\color{red}{\int{e^{t} d t}}} = \int{t e^{2} d t} - 3 {\color{red}{e^{t}}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=e^{2}$$$ と $$$f{\left(t \right)} = t$$$ に対して適用する:
$$- 3 e^{t} + {\color{red}{\int{t e^{2} d t}}} = - 3 e^{t} + {\color{red}{e^{2} \int{t d t}}}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- 3 e^{t} + e^{2} {\color{red}{\int{t d t}}}=- 3 e^{t} + e^{2} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=- 3 e^{t} + e^{2} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
したがって、
$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}$$
積分定数を加える:
$$\int{\left(t e^{2} - 3 e^{t}\right)d t} = \frac{t^{2} e^{2}}{2} - 3 e^{t}+C$$
解答
$$$\int \left(t e^{2} - 3 e^{t}\right)\, dt = \left(\frac{t^{2} e^{2}}{2} - 3 e^{t}\right) + C$$$A