Integral von $$$\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$$.
Lösung
Multiplizieren Sie Zähler und Nenner mit einem Sinus und drücken Sie alles andere durch den Kosinus aus, mithilfe der Formel $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ mit $$$\alpha=x$$$:
$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}}$$
Sei $$$u=\cos{\left(x \right)}$$$.
Dann $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\sin{\left(x \right)} dx = - du$$$.
Daher,
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-1$$$ und $$$f{\left(u \right)} = \frac{1}{u \left(1 - u^{2}\right)}$$$ an:
$${\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \left(1 - u^{2}\right)} d u}\right)}}$$
Sei $$$v=1 - u^{2}$$$.
Dann $$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$ (die Schritte sind » zu sehen), und es gilt $$$u du = - \frac{dv}{2}$$$.
Also,
$$- {\color{red}{\int{\frac{1}{u \left(1 - u^{2}\right)} d u}}} = - {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(v \right)} = \frac{1}{v \left(v - 1\right)}$$$ an:
$$- {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}} = - {\color{red}{\left(\frac{\int{\frac{1}{v \left(v - 1\right)} d v}}{2}\right)}}$$
Partialbruchzerlegung durchführen (die Schritte sind » zu sehen):
$$- \frac{{\color{red}{\int{\frac{1}{v \left(v - 1\right)} d v}}}}{2} = - \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2}$$
Gliedweise integrieren:
$$- \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{\frac{1}{v} d v} + \int{\frac{1}{v - 1} d v}\right)}}}{2}$$
Sei $$$w=v - 1$$$.
Dann $$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (die Schritte sind » zu sehen), und es gilt $$$dv = dw$$$.
Das Integral wird zu
$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$
Das Integral von $$$\frac{1}{w}$$$ ist $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:
$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$w=v - 1$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2}$$
Das Integral von $$$\frac{1}{v}$$$ ist $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$v=1 - u^{2}$$$:
$$- \frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2}$$
Zur Erinnerung: $$$u=\cos{\left(x \right)}$$$:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{u}}^{2} \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{\cos{\left(x \right)}}}^{2} \right)}}{2}$$
Daher,
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\cos^{2}{\left(x \right)} \right)}}{2} + \frac{\ln{\left(\left|{\cos^{2}{\left(x \right)} - 1}\right| \right)}}{2}$$
Vereinfachen:
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}+C$$
Antwort
$$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = \left(\frac{\ln\left(1 - \cos^{2}{\left(x \right)}\right)}{2} - \ln\left(\cos{\left(x \right)}\right)\right) + C$$$A