$$$\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$$ を求めよ。
解答
分子と分母の両方に正弦を1つ掛け、残りはすべて余弦で表し、$$$\alpha=x$$$ を用いて公式 $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ を使う。:
$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}}$$
$$$u=\cos{\left(x \right)}$$$ とする。
すると $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\sin{\left(x \right)} dx = - du$$$ となります。
したがって、
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$ と $$$f{\left(u \right)} = \frac{1}{u \left(1 - u^{2}\right)}$$$ に対して適用する:
$${\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \left(1 - u^{2}\right)} d u}\right)}}$$
$$$v=1 - u^{2}$$$ とする。
すると $$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$(手順は»で確認できます)、$$$u du = - \frac{dv}{2}$$$ となります。
したがって、
$$- {\color{red}{\int{\frac{1}{u \left(1 - u^{2}\right)} d u}}} = - {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}}$$
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(v \right)} = \frac{1}{v \left(v - 1\right)}$$$ に対して適用する:
$$- {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}} = - {\color{red}{\left(\frac{\int{\frac{1}{v \left(v - 1\right)} d v}}{2}\right)}}$$
部分分数分解を行う (手順は»で確認できます):
$$- \frac{{\color{red}{\int{\frac{1}{v \left(v - 1\right)} d v}}}}{2} = - \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2}$$
項別に積分せよ:
$$- \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{\frac{1}{v} d v} + \int{\frac{1}{v - 1} d v}\right)}}}{2}$$
$$$w=v - 1$$$ とする。
すると $$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$(手順は»で確認できます)、$$$dv = dw$$$ となります。
したがって、
$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$
$$$\frac{1}{w}$$$ の不定積分は $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$ です:
$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$
次のことを思い出してください $$$w=v - 1$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2}$$
$$$\frac{1}{v}$$$ の不定積分は $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ です:
$$- \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
次のことを思い出してください $$$v=1 - u^{2}$$$:
$$- \frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2}$$
次のことを思い出してください $$$u=\cos{\left(x \right)}$$$:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{u}}^{2} \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{\cos{\left(x \right)}}}^{2} \right)}}{2}$$
したがって、
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\cos^{2}{\left(x \right)} \right)}}{2} + \frac{\ln{\left(\left|{\cos^{2}{\left(x \right)} - 1}\right| \right)}}{2}$$
簡単化せよ:
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}$$
積分定数を加える:
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}+C$$
解答
$$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = \left(\frac{\ln\left(1 - \cos^{2}{\left(x \right)}\right)}{2} - \ln\left(\cos{\left(x \right)}\right)\right) + C$$$A