Intégrale de $$$\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$$.

Solution

Multipliez le numérateur et le dénominateur par un sinus et exprimez tout le reste en fonction du cosinus, en utilisant la formule $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ avec $$$\alpha=x$$$:

$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}}$$

Soit $$$u=\cos{\left(x \right)}$$$.

Alors $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sin{\left(x \right)} dx = - du$$$.

L’intégrale devient

$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \frac{1}{u \left(1 - u^{2}\right)}$$$ :

$${\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \left(1 - u^{2}\right)} d u}\right)}}$$

Soit $$$v=1 - u^{2}$$$.

Alors $$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$ (les étapes peuvent être vues »), et nous obtenons $$$u du = - \frac{dv}{2}$$$.

L’intégrale peut être réécrite sous la forme

$$- {\color{red}{\int{\frac{1}{u \left(1 - u^{2}\right)} d u}}} = - {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \frac{1}{v \left(v - 1\right)}$$$ :

$$- {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}} = - {\color{red}{\left(\frac{\int{\frac{1}{v \left(v - 1\right)} d v}}{2}\right)}}$$

Effectuer la décomposition en fractions partielles (les étapes peuvent être vues »):

$$- \frac{{\color{red}{\int{\frac{1}{v \left(v - 1\right)} d v}}}}{2} = - \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2}$$

Intégrez terme à terme:

$$- \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{\frac{1}{v} d v} + \int{\frac{1}{v - 1} d v}\right)}}}{2}$$

Soit $$$w=v - 1$$$.

Alors $$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (les étapes peuvent être vues »), et nous obtenons $$$dv = dw$$$.

L’intégrale peut être réécrite sous la forme

$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$

L’intégrale de $$$\frac{1}{w}$$$ est $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$ :

$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

Rappelons que $$$w=v - 1$$$ :

$$- \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2}$$

L’intégrale de $$$\frac{1}{v}$$$ est $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ :

$$- \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Rappelons que $$$v=1 - u^{2}$$$ :

$$- \frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2}$$

Rappelons que $$$u=\cos{\left(x \right)}$$$ :

$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{u}}^{2} \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{\cos{\left(x \right)}}}^{2} \right)}}{2}$$

Par conséquent,

$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\cos^{2}{\left(x \right)} \right)}}{2} + \frac{\ln{\left(\left|{\cos^{2}{\left(x \right)} - 1}\right| \right)}}{2}$$

Simplifier:

$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}$$

Ajouter la constante d'intégration :

$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}+C$$

Réponse

$$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = \left(\frac{\ln\left(1 - \cos^{2}{\left(x \right)}\right)}{2} - \ln\left(\cos{\left(x \right)}\right)\right) + C$$$A


Please try a new game Rotatly