Integrale di $$$\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$$.
Soluzione
Moltiplica il numeratore e il denominatore per un seno e scrivi tutto il resto in funzione del coseno, usando la formula $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ con $$$\alpha=x$$$:
$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}}$$
Sia $$$u=\cos{\left(x \right)}$$$.
Quindi $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\sin{\left(x \right)} dx = - du$$$.
L'integrale può essere riscritto come
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\left(1 - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{1}{u \left(1 - u^{2}\right)}$$$:
$${\color{red}{\int{\left(- \frac{1}{u \left(1 - u^{2}\right)}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \left(1 - u^{2}\right)} d u}\right)}}$$
Sia $$$v=1 - u^{2}$$$.
Quindi $$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$ (i passaggi si possono vedere »), e si ha che $$$u du = - \frac{dv}{2}$$$.
L'integrale diventa
$$- {\color{red}{\int{\frac{1}{u \left(1 - u^{2}\right)} d u}}} = - {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}}$$
Applica la regola del fattore costante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(v \right)} = \frac{1}{v \left(v - 1\right)}$$$:
$$- {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}} = - {\color{red}{\left(\frac{\int{\frac{1}{v \left(v - 1\right)} d v}}{2}\right)}}$$
Esegui la scomposizione in fratti semplici (i passaggi possono essere visualizzati »):
$$- \frac{{\color{red}{\int{\frac{1}{v \left(v - 1\right)} d v}}}}{2} = - \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2}$$
Integra termine per termine:
$$- \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{\frac{1}{v} d v} + \int{\frac{1}{v - 1} d v}\right)}}}{2}$$
Sia $$$w=v - 1$$$.
Quindi $$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (i passaggi si possono vedere »), e si ha che $$$dv = dw$$$.
L'integrale diventa
$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$
L'integrale di $$$\frac{1}{w}$$$ è $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:
$$\frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = \frac{\int{\frac{1}{v} d v}}{2} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$
Ricordiamo che $$$w=v - 1$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} + \frac{\int{\frac{1}{v} d v}}{2}$$
L'integrale di $$$\frac{1}{v}$$$ è $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Ricordiamo che $$$v=1 - u^{2}$$$:
$$- \frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{2}$$
Ricordiamo che $$$u=\cos{\left(x \right)}$$$:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{u}}^{2} \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}^{2}}\right| \right)}}{2} - \frac{\ln{\left({\color{red}{\cos{\left(x \right)}}}^{2} \right)}}{2}$$
Pertanto,
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\cos^{2}{\left(x \right)} \right)}}{2} + \frac{\ln{\left(\left|{\cos^{2}{\left(x \right)} - 1}\right| \right)}}{2}$$
Semplifica:
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = \frac{\ln{\left(1 - \cos^{2}{\left(x \right)} \right)}}{2} - \ln{\left(\cos{\left(x \right)} \right)}+C$$
Risposta
$$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = \left(\frac{\ln\left(1 - \cos^{2}{\left(x \right)}\right)}{2} - \ln\left(\cos{\left(x \right)}\right)\right) + C$$$A