Integral von $$$1 - e^{- \frac{y^{2}}{2}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(1 - e^{- \frac{y^{2}}{2}}\right)\, dy$$$.
Lösung
Gliedweise integrieren:
$${\color{red}{\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y}}} = {\color{red}{\left(\int{1 d y} - \int{e^{- \frac{y^{2}}{2}} d y}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, dy = c y$$$ mit $$$c=1$$$ an:
$$- \int{e^{- \frac{y^{2}}{2}} d y} + {\color{red}{\int{1 d y}}} = - \int{e^{- \frac{y^{2}}{2}} d y} + {\color{red}{y}}$$
Sei $$$u=\frac{\sqrt{2} y}{2}$$$.
Dann $$$du=\left(\frac{\sqrt{2} y}{2}\right)^{\prime }dy = \frac{\sqrt{2}}{2} dy$$$ (die Schritte sind » zu sehen), und es gilt $$$dy = \sqrt{2} du$$$.
Somit,
$$y - {\color{red}{\int{e^{- \frac{y^{2}}{2}} d y}}} = y - {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\sqrt{2}$$$ und $$$f{\left(u \right)} = e^{- u^{2}}$$$ an:
$$y - {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}} = y - {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}$$
Dieses Integral (Fehlerfunktion) besitzt keine geschlossene Form:
$$y - \sqrt{2} {\color{red}{\int{e^{- u^{2}} d u}}} = y - \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}$$
Zur Erinnerung: $$$u=\frac{\sqrt{2} y}{2}$$$:
$$y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} y}{2}\right)}} \right)}}{2}$$
Daher,
$$\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}+C$$
Antwort
$$$\int \left(1 - e^{- \frac{y^{2}}{2}}\right)\, dy = \left(y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}\right) + C$$$A