Integral dari $$$1 - e^{- \frac{y^{2}}{2}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$1 - e^{- \frac{y^{2}}{2}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(1 - e^{- \frac{y^{2}}{2}}\right)\, dy$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y}}} = {\color{red}{\left(\int{1 d y} - \int{e^{- \frac{y^{2}}{2}} d y}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dy = c y$$$ dengan $$$c=1$$$:

$$- \int{e^{- \frac{y^{2}}{2}} d y} + {\color{red}{\int{1 d y}}} = - \int{e^{- \frac{y^{2}}{2}} d y} + {\color{red}{y}}$$

Misalkan $$$u=\frac{\sqrt{2} y}{2}$$$.

Kemudian $$$du=\left(\frac{\sqrt{2} y}{2}\right)^{\prime }dy = \frac{\sqrt{2}}{2} dy$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dy = \sqrt{2} du$$$.

Integral tersebut dapat ditulis ulang sebagai

$$y - {\color{red}{\int{e^{- \frac{y^{2}}{2}} d y}}} = y - {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\sqrt{2}$$$ dan $$$f{\left(u \right)} = e^{- u^{2}}$$$:

$$y - {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}} = y - {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}$$

Integral ini (Fungsi galat) tidak memiliki bentuk tertutup:

$$y - \sqrt{2} {\color{red}{\int{e^{- u^{2}} d u}}} = y - \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}$$

Ingat bahwa $$$u=\frac{\sqrt{2} y}{2}$$$:

$$y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} y}{2}\right)}} \right)}}{2}$$

Oleh karena itu,

$$\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}$$

Tambahkan konstanta integrasi:

$$\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}+C$$

Jawaban

$$$\int \left(1 - e^{- \frac{y^{2}}{2}}\right)\, dy = \left(y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}\right) + C$$$A


Please try a new game Rotatly