$$$1 - e^{- \frac{y^{2}}{2}}$$$の積分
入力内容
$$$\int \left(1 - e^{- \frac{y^{2}}{2}}\right)\, dy$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y}}} = {\color{red}{\left(\int{1 d y} - \int{e^{- \frac{y^{2}}{2}} d y}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dy = c y$$$ を適用する:
$$- \int{e^{- \frac{y^{2}}{2}} d y} + {\color{red}{\int{1 d y}}} = - \int{e^{- \frac{y^{2}}{2}} d y} + {\color{red}{y}}$$
$$$u=\frac{\sqrt{2} y}{2}$$$ とする。
すると $$$du=\left(\frac{\sqrt{2} y}{2}\right)^{\prime }dy = \frac{\sqrt{2}}{2} dy$$$(手順は»で確認できます)、$$$dy = \sqrt{2} du$$$ となります。
積分は次のようになります
$$y - {\color{red}{\int{e^{- \frac{y^{2}}{2}} d y}}} = y - {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\sqrt{2}$$$ と $$$f{\left(u \right)} = e^{- u^{2}}$$$ に対して適用する:
$$y - {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}} = y - {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}$$
この積分(誤差関数)には閉形式はありません:
$$y - \sqrt{2} {\color{red}{\int{e^{- u^{2}} d u}}} = y - \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}$$
次のことを思い出してください $$$u=\frac{\sqrt{2} y}{2}$$$:
$$y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} y}{2}\right)}} \right)}}{2}$$
したがって、
$$\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}$$
積分定数を加える:
$$\int{\left(1 - e^{- \frac{y^{2}}{2}}\right)d y} = y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}+C$$
解答
$$$\int \left(1 - e^{- \frac{y^{2}}{2}}\right)\, dy = \left(y - \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}\right) + C$$$A