Integral von $$$\frac{1}{9 x e^{2} - 4}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{9 x e^{2} - 4}\, dx$$$.
Lösung
Sei $$$u=9 x e^{2} - 4$$$.
Dann $$$du=\left(9 x e^{2} - 4\right)^{\prime }dx = 9 e^{2} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{9 e^{2}}$$$.
Daher,
$${\color{red}{\int{\frac{1}{9 x e^{2} - 4} d x}}} = {\color{red}{\int{\frac{1}{9 u e^{2}} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{9 e^{2}}$$$ und $$$f{\left(u \right)} = \frac{1}{u}$$$ an:
$${\color{red}{\int{\frac{1}{9 u e^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{9 e^{2}}\right)}}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{9 e^{2}} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{9 e^{2}}$$
Zur Erinnerung: $$$u=9 x e^{2} - 4$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{9 e^{2}} = \frac{\ln{\left(\left|{{\color{red}{\left(9 x e^{2} - 4\right)}}}\right| \right)}}{9 e^{2}}$$
Daher,
$$\int{\frac{1}{9 x e^{2} - 4} d x} = \frac{\ln{\left(\left|{9 x e^{2} - 4}\right| \right)}}{9 e^{2}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{9 x e^{2} - 4} d x} = \frac{\ln{\left(\left|{9 x e^{2} - 4}\right| \right)}}{9 e^{2}}+C$$
Antwort
$$$\int \frac{1}{9 x e^{2} - 4}\, dx = \frac{\ln\left(\left|{9 x e^{2} - 4}\right|\right)}{9 e^{2}} + C$$$A