$$$\frac{1}{9 x e^{2} - 4}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{1}{9 x e^{2} - 4}\, dx$$$.
Çözüm
$$$u=9 x e^{2} - 4$$$ olsun.
Böylece $$$du=\left(9 x e^{2} - 4\right)^{\prime }dx = 9 e^{2} dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{9 e^{2}}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{\frac{1}{9 x e^{2} - 4} d x}}} = {\color{red}{\int{\frac{1}{9 u e^{2}} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{9 e^{2}}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$${\color{red}{\int{\frac{1}{9 u e^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{9 e^{2}}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{9 e^{2}} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{9 e^{2}}$$
Hatırlayın ki $$$u=9 x e^{2} - 4$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{9 e^{2}} = \frac{\ln{\left(\left|{{\color{red}{\left(9 x e^{2} - 4\right)}}}\right| \right)}}{9 e^{2}}$$
Dolayısıyla,
$$\int{\frac{1}{9 x e^{2} - 4} d x} = \frac{\ln{\left(\left|{9 x e^{2} - 4}\right| \right)}}{9 e^{2}}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{1}{9 x e^{2} - 4} d x} = \frac{\ln{\left(\left|{9 x e^{2} - 4}\right| \right)}}{9 e^{2}}+C$$
Cevap
$$$\int \frac{1}{9 x e^{2} - 4}\, dx = \frac{\ln\left(\left|{9 x e^{2} - 4}\right|\right)}{9 e^{2}} + C$$$A