Ableitung von $$$\frac{1}{\sin{\left(x \right)}}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right)$$$.
Lösung
Die Funktion $$$\frac{1}{\sin{\left(x \right)}}$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \frac{1}{u}$$$ und $$$g{\left(x \right)} = \sin{\left(x \right)}$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$Wende die Potenzregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ mit $$$n = -1$$$ an:
$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$Zurück zur ursprünglichen Variable:
$$- \frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(\sin{\left(x \right)}\right)}^{2}}$$Die Ableitung des Sinus ist $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}}{\sin^{2}{\left(x \right)}} = - \frac{{\color{red}\left(\cos{\left(x \right)}\right)}}{\sin^{2}{\left(x \right)}}$$Somit gilt $$$\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right) = - \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$.
Antwort
$$$\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right) = - \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$A