$$$\frac{1}{\sin{\left(x \right)}}$$$的导数

该计算器将求$$$\frac{1}{\sin{\left(x \right)}}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right)$$$

解答

函数$$$\frac{1}{\sin{\left(x \right)}}$$$是两个函数$$$f{\left(u \right)} = \frac{1}{u}$$$$$$g{\left(x \right)} = \sin{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = -1$$$:

$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

返回到原变量:

$$- \frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(\sin{\left(x \right)}\right)}^{2}}$$

正弦函数的导数为 $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}}{\sin^{2}{\left(x \right)}} = - \frac{{\color{red}\left(\cos{\left(x \right)}\right)}}{\sin^{2}{\left(x \right)}}$$

因此,$$$\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right) = - \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$

答案

$$$\frac{d}{dx} \left(\frac{1}{\sin{\left(x \right)}}\right) = - \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$A


Please try a new game Rotatly