Integral of $$$u^{5}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int u^{5}\, du$$$.
Solution
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=5$$$:
$${\color{red}{\int{u^{5} d u}}}={\color{red}{\frac{u^{1 + 5}}{1 + 5}}}={\color{red}{\left(\frac{u^{6}}{6}\right)}}$$
Therefore,
$$\int{u^{5} d u} = \frac{u^{6}}{6}$$
Add the constant of integration:
$$\int{u^{5} d u} = \frac{u^{6}}{6}+C$$
Answer
$$$\int u^{5}\, du = \frac{u^{6}}{6} + C$$$A
Please try a new game Rotatly