Integral of $$$e^{- 2 y}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{- 2 y}\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=e^{- 2 y}$$$:
$${\color{red}{\int{e^{- 2 y} d x}}} = {\color{red}{x e^{- 2 y}}}$$
Therefore,
$$\int{e^{- 2 y} d x} = x e^{- 2 y}$$
Add the constant of integration:
$$\int{e^{- 2 y} d x} = x e^{- 2 y}+C$$
Answer
$$$\int e^{- 2 y}\, dx = x e^{- 2 y} + C$$$A
Please try a new game Rotatly