$$$\frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy$$$。
解答
令 $$$u=\cos{\left(y \right)}$$$。
則 $$$du=\left(\cos{\left(y \right)}\right)^{\prime }dy = - \sin{\left(y \right)} dy$$$ (步驟見»),並可得 $$$\sin{\left(y \right)} dy = - du$$$。
因此,
$${\color{red}{\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$:
$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$
令 $$$v=\ln{\left(u \right)}$$$。
則 $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (步驟見»),並可得 $$$\frac{du}{u} = dv$$$。
因此,
$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
回顧一下 $$$v=\ln{\left(u \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
回顧一下 $$$u=\cos{\left(y \right)}$$$:
$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\cos{\left(y \right)}}} \right)}}\right| \right)}$$
因此,
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}$$
加上積分常數:
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}+C$$
答案
$$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy = - \ln\left(\left|{\ln\left(\cos{\left(y \right)}\right)}\right|\right) + C$$$A