Integrale di $$$\frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy$$$.

Soluzione

Sia $$$u=\cos{\left(y \right)}$$$.

Quindi $$$du=\left(\cos{\left(y \right)}\right)^{\prime }dy = - \sin{\left(y \right)} dy$$$ (i passaggi si possono vedere »), e si ha che $$$\sin{\left(y \right)} dy = - du$$$.

Pertanto,

$${\color{red}{\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$:

$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$

Sia $$$v=\ln{\left(u \right)}$$$.

Quindi $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (i passaggi si possono vedere »), e si ha che $$$\frac{du}{u} = dv$$$.

L'integrale può essere riscritto come

$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$

L'integrale di $$$\frac{1}{v}$$$ è $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Ricordiamo che $$$v=\ln{\left(u \right)}$$$:

$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$

Ricordiamo che $$$u=\cos{\left(y \right)}$$$:

$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\cos{\left(y \right)}}} \right)}}\right| \right)}$$

Pertanto,

$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}+C$$

Risposta

$$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy = - \ln\left(\left|{\ln\left(\cos{\left(y \right)}\right)}\right|\right) + C$$$A


Please try a new game Rotatly