Ολοκλήρωμα του $$$\frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy$$$.
Λύση
Έστω $$$u=\cos{\left(y \right)}$$$.
Τότε $$$du=\left(\cos{\left(y \right)}\right)^{\prime }dy = - \sin{\left(y \right)} dy$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sin{\left(y \right)} dy = - du$$$.
Επομένως,
$${\color{red}{\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$:
$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$
Έστω $$$v=\ln{\left(u \right)}$$$.
Τότε $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\frac{du}{u} = dv$$$.
Το ολοκλήρωμα γίνεται
$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$
Το ολοκλήρωμα του $$$\frac{1}{v}$$$ είναι $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Θυμηθείτε ότι $$$v=\ln{\left(u \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
Θυμηθείτε ότι $$$u=\cos{\left(y \right)}$$$:
$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\cos{\left(y \right)}}} \right)}}\right| \right)}$$
Επομένως,
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}+C$$
Απάντηση
$$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy = - \ln\left(\left|{\ln\left(\cos{\left(y \right)}\right)}\right|\right) + C$$$A