Integral dari $$$\frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy$$$.
Solusi
Misalkan $$$u=\cos{\left(y \right)}$$$.
Kemudian $$$du=\left(\cos{\left(y \right)}\right)^{\prime }dy = - \sin{\left(y \right)} dy$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sin{\left(y \right)} dy = - du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$:
$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$
Misalkan $$$v=\ln{\left(u \right)}$$$.
Kemudian $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{du}{u} = dv$$$.
Jadi,
$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$
Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Ingat bahwa $$$v=\ln{\left(u \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
Ingat bahwa $$$u=\cos{\left(y \right)}$$$:
$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\cos{\left(y \right)}}} \right)}}\right| \right)}$$
Oleh karena itu,
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}+C$$
Jawaban
$$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy = - \ln\left(\left|{\ln\left(\cos{\left(y \right)}\right)}\right|\right) + C$$$A