$$$\frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy$$$。
解答
设$$$u=\cos{\left(y \right)}$$$。
则$$$du=\left(\cos{\left(y \right)}\right)^{\prime }dy = - \sin{\left(y \right)} dy$$$ (步骤见»),并有$$$\sin{\left(y \right)} dy = - du$$$。
该积分可以改写为
$${\color{red}{\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$
设$$$v=\ln{\left(u \right)}$$$。
则$$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (步骤见»),并有$$$\frac{du}{u} = dv$$$。
因此,
$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
回忆一下 $$$v=\ln{\left(u \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
回忆一下 $$$u=\cos{\left(y \right)}$$$:
$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\cos{\left(y \right)}}} \right)}}\right| \right)}$$
因此,
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}$$
加上积分常数:
$$\int{\frac{\tan{\left(y \right)}}{\ln{\left(\cos{\left(y \right)} \right)}} d y} = - \ln{\left(\left|{\ln{\left(\cos{\left(y \right)} \right)}}\right| \right)}+C$$
答案
$$$\int \frac{\tan{\left(y \right)}}{\ln\left(\cos{\left(y \right)}\right)}\, dy = - \ln\left(\left|{\ln\left(\cos{\left(y \right)}\right)}\right|\right) + C$$$A