$$$e^{\frac{t}{50}}$$$ 的積分
您的輸入
求$$$\int e^{\frac{t}{50}}\, dt$$$。
解答
令 $$$u=\frac{t}{50}$$$。
則 $$$du=\left(\frac{t}{50}\right)^{\prime }dt = \frac{dt}{50}$$$ (步驟見»),並可得 $$$dt = 50 du$$$。
該積分變為
$${\color{red}{\int{e^{\frac{t}{50}} d t}}} = {\color{red}{\int{50 e^{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=50$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{50 e^{u} d u}}} = {\color{red}{\left(50 \int{e^{u} d u}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$50 {\color{red}{\int{e^{u} d u}}} = 50 {\color{red}{e^{u}}}$$
回顧一下 $$$u=\frac{t}{50}$$$:
$$50 e^{{\color{red}{u}}} = 50 e^{{\color{red}{\left(\frac{t}{50}\right)}}}$$
因此,
$$\int{e^{\frac{t}{50}} d t} = 50 e^{\frac{t}{50}}$$
加上積分常數:
$$\int{e^{\frac{t}{50}} d t} = 50 e^{\frac{t}{50}}+C$$
答案
$$$\int e^{\frac{t}{50}}\, dt = 50 e^{\frac{t}{50}} + C$$$A