$$$\frac{1}{\sqrt{x^{2} - 1}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sqrt{x^{2} - 1}}\, dx$$$。
解答
令 $$$x=\cosh{\left(u \right)}$$$。
則 $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$(步驟見»)。
此外,由此可得 $$$u=\operatorname{acosh}{\left(x \right)}$$$。
因此,
$$$\frac{1}{\sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}$$$
使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}}$$$
假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}} = \frac{1}{\sinh{\left( u \right)}}$$$
積分可以改寫為
$${\color{red}{\int{\frac{1}{\sqrt{x^{2} - 1}} d x}}} = {\color{red}{\int{1 d u}}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
回顧一下 $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$
因此,
$$\int{\frac{1}{\sqrt{x^{2} - 1}} d x} = \operatorname{acosh}{\left(x \right)}$$
加上積分常數:
$$\int{\frac{1}{\sqrt{x^{2} - 1}} d x} = \operatorname{acosh}{\left(x \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{x^{2} - 1}}\, dx = \operatorname{acosh}{\left(x \right)} + C$$$A