Integral dari $$$\frac{1}{\sqrt{x^{2} - 1}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{\sqrt{x^{2} - 1}}\, dx$$$.
Solusi
Misalkan $$$x=\cosh{\left(u \right)}$$$.
Maka $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (langkah-langkah dapat dilihat »).
Selain itu, berlaku $$$u=\operatorname{acosh}{\left(x \right)}$$$.
Integran menjadi
$$$\frac{1}{\sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}$$$
Gunakan identitas $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}}$$$
Dengan asumsi bahwa $$$\sinh{\left( u \right)} \ge 0$$$, diperoleh sebagai berikut:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}} = \frac{1}{\sinh{\left( u \right)}}$$$
Integral menjadi
$${\color{red}{\int{\frac{1}{\sqrt{x^{2} - 1}} d x}}} = {\color{red}{\int{1 d u}}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
Ingat bahwa $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\frac{1}{\sqrt{x^{2} - 1}} d x} = \operatorname{acosh}{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{\sqrt{x^{2} - 1}} d x} = \operatorname{acosh}{\left(x \right)}+C$$
Jawaban
$$$\int \frac{1}{\sqrt{x^{2} - 1}}\, dx = \operatorname{acosh}{\left(x \right)} + C$$$A