$$$\frac{1}{\cos^{2}{\left(\theta \right)}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\cos^{2}{\left(\theta \right)}}\, d\theta$$$。
解答
將被積函數以正割表示:
$${\color{red}{\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}}$$
$$$\sec^{2}{\left(\theta \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\tan{\left(\theta \right)}}}$$
因此,
$$\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta} = \tan{\left(\theta \right)}$$
加上積分常數:
$$\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta} = \tan{\left(\theta \right)}+C$$
答案
$$$\int \frac{1}{\cos^{2}{\left(\theta \right)}}\, d\theta = \tan{\left(\theta \right)} + C$$$A
Please try a new game Rotatly