Integral of $$$\frac{1}{\cos^{2}{\left(\theta \right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{\cos^{2}{\left(\theta \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{\cos^{2}{\left(\theta \right)}}\, d\theta$$$.

Solution

Rewrite the integrand in terms of the secant:

$${\color{red}{\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}}$$

The integral of $$$\sec^{2}{\left(\theta \right)}$$$ is $$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$$:

$${\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\tan{\left(\theta \right)}}}$$

Therefore,

$$\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta} = \tan{\left(\theta \right)}$$

Add the constant of integration:

$$\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta} = \tan{\left(\theta \right)}+C$$

Answer

$$$\int \frac{1}{\cos^{2}{\left(\theta \right)}}\, d\theta = \tan{\left(\theta \right)} + C$$$A


Please try a new game Rotatly