Integral of $$$\frac{1}{\cos^{2}{\left(\theta \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\cos^{2}{\left(\theta \right)}}\, d\theta$$$.
Solution
Rewrite the integrand in terms of the secant:
$${\color{red}{\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}}$$
The integral of $$$\sec^{2}{\left(\theta \right)}$$$ is $$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\tan{\left(\theta \right)}}}$$
Therefore,
$$\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta} = \tan{\left(\theta \right)}$$
Add the constant of integration:
$$\int{\frac{1}{\cos^{2}{\left(\theta \right)}} d \theta} = \tan{\left(\theta \right)}+C$$
Answer
$$$\int \frac{1}{\cos^{2}{\left(\theta \right)}}\, d\theta = \tan{\left(\theta \right)} + C$$$A