$$$\frac{1}{\sqrt{1 - y^{2}}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sqrt{1 - y^{2}}}\, dy$$$。
解答
$$$\frac{1}{\sqrt{1 - y^{2}}}$$$ 的積分是 $$$\int{\frac{1}{\sqrt{1 - y^{2}}} d y} = \operatorname{asin}{\left(y \right)}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{1 - y^{2}}} d y}}} = {\color{red}{\operatorname{asin}{\left(y \right)}}}$$
因此,
$$\int{\frac{1}{\sqrt{1 - y^{2}}} d y} = \operatorname{asin}{\left(y \right)}$$
加上積分常數:
$$\int{\frac{1}{\sqrt{1 - y^{2}}} d y} = \operatorname{asin}{\left(y \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{1 - y^{2}}}\, dy = \operatorname{asin}{\left(y \right)} + C$$$A
Please try a new game Rotatly