$$$\frac{e^{t}}{t^{2}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{e^{t}}{t^{2}}\, dx$$$。
解答
配合 $$$c=\frac{e^{t}}{t^{2}}$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$${\color{red}{\int{\frac{e^{t}}{t^{2}} d x}}} = {\color{red}{\frac{x e^{t}}{t^{2}}}}$$
因此,
$$\int{\frac{e^{t}}{t^{2}} d x} = \frac{x e^{t}}{t^{2}}$$
加上積分常數:
$$\int{\frac{e^{t}}{t^{2}} d x} = \frac{x e^{t}}{t^{2}}+C$$
答案
$$$\int \frac{e^{t}}{t^{2}}\, dx = \frac{x e^{t}}{t^{2}} + C$$$A
Please try a new game Rotatly