$$$\frac{\sin{\left(2 x \right)}}{x}$$$ 的积分

该计算器将求出$$$\frac{\sin{\left(2 x \right)}}{x}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\sin{\left(2 x \right)}}{x}\, dx$$$

解答

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

该积分可以改写为

$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{x} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}}$$

该积分(正弦积分)没有闭式表达式:

$${\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = {\color{red}{\operatorname{Si}{\left(u \right)}}}$$

回忆一下 $$$u=2 x$$$:

$$\operatorname{Si}{\left({\color{red}{u}} \right)} = \operatorname{Si}{\left({\color{red}{\left(2 x\right)}} \right)}$$

因此,

$$\int{\frac{\sin{\left(2 x \right)}}{x} d x} = \operatorname{Si}{\left(2 x \right)}$$

加上积分常数:

$$\int{\frac{\sin{\left(2 x \right)}}{x} d x} = \operatorname{Si}{\left(2 x \right)}+C$$

答案

$$$\int \frac{\sin{\left(2 x \right)}}{x}\, dx = \operatorname{Si}{\left(2 x \right)} + C$$$A


Please try a new game Rotatly