$$$\frac{\sin{\left(2 x \right)}}{x}$$$ 的积分
您的输入
求$$$\int \frac{\sin{\left(2 x \right)}}{x}\, dx$$$。
解答
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
该积分可以改写为
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{x} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}}$$
该积分(正弦积分)没有闭式表达式:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = {\color{red}{\operatorname{Si}{\left(u \right)}}}$$
回忆一下 $$$u=2 x$$$:
$$\operatorname{Si}{\left({\color{red}{u}} \right)} = \operatorname{Si}{\left({\color{red}{\left(2 x\right)}} \right)}$$
因此,
$$\int{\frac{\sin{\left(2 x \right)}}{x} d x} = \operatorname{Si}{\left(2 x \right)}$$
加上积分常数:
$$\int{\frac{\sin{\left(2 x \right)}}{x} d x} = \operatorname{Si}{\left(2 x \right)}+C$$
答案
$$$\int \frac{\sin{\left(2 x \right)}}{x}\, dx = \operatorname{Si}{\left(2 x \right)} + C$$$A