Integral of $$$\frac{\sin{\left(2 x \right)}}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin{\left(2 x \right)}}{x}\, dx$$$.
Solution
Let $$$u=2 x$$$.
Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.
So,
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{x} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}}$$
This integral (Sine Integral) does not have a closed form:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = {\color{red}{\operatorname{Si}{\left(u \right)}}}$$
Recall that $$$u=2 x$$$:
$$\operatorname{Si}{\left({\color{red}{u}} \right)} = \operatorname{Si}{\left({\color{red}{\left(2 x\right)}} \right)}$$
Therefore,
$$\int{\frac{\sin{\left(2 x \right)}}{x} d x} = \operatorname{Si}{\left(2 x \right)}$$
Add the constant of integration:
$$\int{\frac{\sin{\left(2 x \right)}}{x} d x} = \operatorname{Si}{\left(2 x \right)}+C$$
Answer
$$$\int \frac{\sin{\left(2 x \right)}}{x}\, dx = \operatorname{Si}{\left(2 x \right)} + C$$$A