$$$\frac{1}{\sin^{2}{\left(2 x \right)}}$$$ 的积分

该计算器将求出$$$\frac{1}{\sin^{2}{\left(2 x \right)}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx$$$

解答

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

该积分可以改写为

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}{2}\right)}}$$

将被积函数用余割表示:

$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2}$$

$$$\csc^{2}{\left(u \right)}$$$ 的积分为 $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{2}$$

回忆一下 $$$u=2 x$$$:

$$- \frac{\cot{\left({\color{red}{u}} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

因此,

$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}$$

加上积分常数:

$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}+C$$

答案

$$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx = - \frac{\cot{\left(2 x \right)}}{2} + C$$$A


Please try a new game Rotatly